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Dynamic Hashing 
• Static hashing schemes

- Static table

- Unload all the data and reenter them

- Reorganization 
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• Dynamic hashing schemes

- Extendible hashing

- Dynamic hashing 

- Linear hashing

• Extendible Hashing:

- Use index

- Records are stored in terminal nodes

- Page overflow  split  modify index

- H(key) = pseudokey

- Page depth = the number of bits to distinguish the

pseudokey on which page

- Index depth = maximun of all the page depth

- Not a sequential order 
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Algorithm 

• Extendible Hashing Insertion
– Hashing_function(key) = pseudokey

– N(index depth) most significant bits of the

pseudokey = address of entry in index

– Pointer in index  proper page

– If space available in page, insert record, else

A. Split the overflowing page

B. Place each group of records into a separate page

C. Determine the page depths of these two pages

D. If these page depths < the index depth, then update 
index pointers 

Else, index pointer = maximum(k)

 expand index size

 adjust index pointer
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An Example 

• Data page = 3 records

• H(key) = key mod 11

• Data is 27, 18, 29, 28, 42, 13, 16 
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• Insert 28
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• Insert 42 0101 27
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• Insert 13, 16 0101
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Another Implementation of Extendible Hashing

• A pointer or null pointer to a data page

• All records on a data page have the same N 

most significant bits in their pseudokeys 



Dynamic Hashing - 10

• Delete 16, 29 
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Deletion

• Page coalesce  reduce the amount of storage

 reduce the depth of the index

• delete record   check buddy page 
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• Delete 13 
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Dynamic Hashing

• Index grows gradually (not doubling)

• Use pseudo_random_number generator

 H1(keyi)

 B(H1(keyi))=(bi0, bi1, bi2, …) bij={0,1}

for all j

• Use forest of binary trees

- H0(keyi)  {0, 1, …, n} determine which

subtree
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Algorithm 
• Dynamic Hashing Insertion 

1. H0(key) = subdirectory

2. The current node is not an external node

 use B(H1(key)) to navigate subdirectory

 0->left, 1->right

3. if not full, insert the new record, else repeat 
until an overflow no longer exits

A. external  internal node

create two offspring external nodes

B. reinsert the record using the next bit of

pseudorandom sequence
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Example

• Data 27, 18, 29, 28, 39, 13, 16, 36

• H0 = key mod 3, H1 = key mod 11

• Data page = 2 records 
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Linear Hashing

• To permit file expansion without reorganization.

• No index.

• How to allow the file expand?

- Changing the hashing function.

- Has two hashing functions active at a

time. 
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.......

0 1 N-1

^
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structure

chain index

primary pages

overflow pages
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• A pointer NEXT points the next chain to be split

• N is the number of chains initially; fixed

• Hlevel is the hashing function for the current level

• m is the output from the hashing function
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Algorithm

1. Determine the chain, m, which the record maps to 

using m = hlevel(key).

2. Check where the chain has split by comparing m with 

NEXT, if m < NEXT, then m = hlevel+1(key).

3. Insert the record into chain m.
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4. Check the upper space utilization bound, while it is 
exceeded then

4.1 Create a new chain with index equal to NEXT +

N*2level

4.2 For each record on the chain NEXT, determine

whether to move it.

4.3 Update parameters, NEXT = NEXT + 1, if NEXT >=

N*2level, then reset NEXT to 0 and level = level + 1. 

• On each level, we split the chains in the order from 
0 to the maximum chain (N*2level –1).

• After all the chains on the current level have been 
split, we increment the current level and begin the 
split process over again with chain 0.

• Where hlevel(key) = key mod [N*2level] 



Dynamic Hashing - 30



Dynamic Hashing - 31



Dynamic Hashing - 32

• To retrieve a record with key 20

1. Apply h0 => h0(20) = 0 < (NEXT = 1)

2. Apply h1 => h1(20) = 20 mod (4*2) = 4

3. We locate 20 on chain 4. 
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Discussion

1)Retrieve 28

Current level = 1

h1(28) = 0 < NEXT (=1)  h2(28) = 4

2)Retrieve 19

h1(19) = 3 >= NEXT (=1) 


