
Dynamic Hashing - 1

Dynamic Hashing
• Static hashing schemes

- Static table

- Unload all the data and reenter them

- Reorganization

Current table

needed

space

h1

key

space reorganized

table
h2

key

space

hash function

mapping before

reorganization

hash function

mapping after

reorganization

Dynamic Hashing - 2

• Dynamic hashing schemes

- Extendible hashing

- Dynamic hashing

- Linear hashing

• Extendible Hashing:

- Use index

- Records are stored in terminal nodes

- Page overflow split modify index

- H(key) = pseudokey

- Page depth = the number of bits to distinguish the

pseudokey on which page

- Index depth = maximun of all the page depth

- Not a sequential order

Dynamic Hashing - 3

H(key)

Bit pattern ptrs.

..
..

..

index

(one access)

..
..

..

Leaf nodes

(data pages)

(one access)

Dynamic Hashing - 4

Algorithm

• Extendible Hashing Insertion
– Hashing_function(key) = pseudokey

– N(index depth) most significant bits of the

pseudokey = address of entry in index

– Pointer in index proper page

– If space available in page, insert record, else

A. Split the overflowing page

B. Place each group of records into a separate page

C. Determine the page depths of these two pages

D. If these page depths < the index depth, then update
index pointers

Else, index pointer = maximum(k)

 expand index size

 adjust index pointer

Dynamic Hashing - 5

An Example

• Data page = 3 records

• H(key) = key mod 11

• Data is 27, 18, 29, 28, 42, 13, 16

0

1

index depth 1

0101

0111

0111

27

18

29

Pseudokey Data
1 Page depth

index Leaves (3 records/page)

Dynamic Hashing - 6

• Insert 28

000

001

010

011

100

101

110

111

index depth 3

0101 27

Pseudokey Data

3 Page depth

0110

0111

0111

28

18

29

3

index Leaves (3 records/page)

Dynamic Hashing - 7

• Insert 42 0101 27

Pseudokey Data
3 Page depth

000

001

010

011

100

101

110

111

index depth 3

0110

0111

0111

28

18

29

3

1001 42

1

index Leaves (3 records/page)

Dynamic Hashing - 8

• Insert 13, 16 0101

0010

0101

27

13

16

Pseudokey Data
3 Page depth

000

001

010

011

100

101

110

111

index depth 3

0110

0111

0111

28

18

29

3

1001 42

1

index Leaves (3 records/page)

Dynamic Hashing - 9

Another Implementation of Extendible Hashing

• A pointer or null pointer to a data page

• All records on a data page have the same N

most significant bits in their pseudokeys

Dynamic Hashing - 10

• Delete 16, 29

Dynamic Hashing - 11

Dynamic Hashing - 12

Deletion

• Page coalesce reduce the amount of storage

 reduce the depth of the index

• delete record check buddy page

Dynamic Hashing - 13

• Delete 13

Dynamic Hashing - 14

Dynamic Hashing - 15

Dynamic Hashing

• Index grows gradually (not doubling)

• Use pseudo_random_number generator

 H1(keyi)

 B(H1(keyi))=(bi0, bi1, bi2, …) bij={0,1}

for all j

• Use forest of binary trees

- H0(keyi) {0, 1, …, n} determine which

subtree

Dynamic Hashing - 16

Algorithm
• Dynamic Hashing Insertion

1. H0(key) = subdirectory

2. The current node is not an external node

 use B(H1(key)) to navigate subdirectory

 0->left, 1->right

3. if not full, insert the new record, else repeat
until an overflow no longer exits

A. external internal node

create two offspring external nodes

B. reinsert the record using the next bit of

pseudorandom sequence

Dynamic Hashing - 17

Dynamic Hashing - 18

Dynamic Hashing - 19

Example

• Data 27, 18, 29, 28, 39, 13, 16, 36

• H0 = key mod 3, H1 = key mod 11

• Data page = 2 records

Dynamic Hashing - 20

Dynamic Hashing - 21

Dynamic Hashing - 22

Dynamic Hashing - 23

Dynamic Hashing - 24

Dynamic Hashing - 25

Linear Hashing

• To permit file expansion without reorganization.

• No index.

• How to allow the file expand?

- Changing the hashing function.

- Has two hashing functions active at a

time.

Dynamic Hashing - 26

.......

0 1 N-1

^

NEXT

structure

chain index

primary pages

overflow pages

Dynamic Hashing - 27

• A pointer NEXT points the next chain to be split

• N is the number of chains initially; fixed

• Hlevel is the hashing function for the current level

• m is the output from the hashing function

Dynamic Hashing - 28

Algorithm

1. Determine the chain, m, which the record maps to

using m = hlevel(key).

2. Check where the chain has split by comparing m with

NEXT, if m < NEXT, then m = hlevel+1(key).

3. Insert the record into chain m.

Dynamic Hashing - 29

4. Check the upper space utilization bound, while it is
exceeded then

4.1 Create a new chain with index equal to NEXT +

N*2level

4.2 For each record on the chain NEXT, determine

whether to move it.

4.3 Update parameters, NEXT = NEXT + 1, if NEXT >=

N*2level, then reset NEXT to 0 and level = level + 1.

• On each level, we split the chains in the order from
0 to the maximum chain (N*2level –1).

• After all the chains on the current level have been
split, we increment the current level and begin the
split process over again with chain 0.

• Where hlevel(key) = key mod [N*2level]

Dynamic Hashing - 30

Dynamic Hashing - 31

Dynamic Hashing - 32

• To retrieve a record with key 20

1. Apply h0 => h0(20) = 0 < (NEXT = 1)

2. Apply h1 => h1(20) = 20 mod (4*2) = 4

3. We locate 20 on chain 4.

16

13

17

21

0 1

^

NEXT

25

9

10

14

22

2

30

3

7

3

20

4

Dynamic Hashing - 33

Dynamic Hashing - 34

Dynamic Hashing - 35

Dynamic Hashing - 36

Dynamic Hashing - 37

Dynamic Hashing - 38

Dynamic Hashing - 39

Dynamic Hashing - 40

Dynamic Hashing - 41

Discussion

1)Retrieve 28

Current level = 1

h1(28) = 0 < NEXT (=1) h2(28) = 4

2)Retrieve 19

h1(19) = 3 >= NEXT (=1)

